

Client Staffordshire Crystal Ltd.

Unit 14 Pedmore Road Ind. Estate

Brierly Hill West Midlands DY5 1TJ

Part 1: Executive Summary

Report for the Periodic Monitoring of Emissions to Air.

Site Brierly Hill

Plant Acid Fume Scrubber
Sampling Date 14th October 2014
Report Date 25th November 2014

Job Number 2p71962

Permit Number PB/98 Variation 200839393

Report Prepared by: Print Graham Rowley

MCERTS No. MM 03 148 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Emily Buffam

MCERTS No. MM 04 502 Level 2 TE: 1,2,3,4

REC Environmental Monitoring Ltd

10 Broad Lane Moldgreen Huddersfield HD5 9BX

Tel: 0845 676 9303

Company Registration No 08343822

Page 2 of 21

Contents

Page 1	F	Part 1: Executive Summary
Page 2		Contents
Page 3	B N	Monitoring Objectives
Page 3	3 5	Special Monitoring Requirements
Page 4		Summary Of Methods
Page 4		Summary Of Results
Page 5	5 (Operating Information
Page 5	5 C	Comments On Monitoring Procedures
Page 6	6 F	Part 2: Supporting Information
Page 7		Appendix 1
Page 8 Page 9		Emission Monitoring Procedures and Instrumentation Sampling Personnel
Page 9		Equipment References
Page 9		Subcontracted Analysis
i age o	, ,	abbonitable a 7 thaty sis
Page 1	0 4	Appendix 2
Page 1		Preliminary Velocity Traverse & Moisture Data
Page 1	2 F	Hydrogen Fluoride - Sampling Data
Page 1	3 F	Hydrogen Fluoride - Emission Results
Page 1	4 A	Appendix 3
Page 1	5 E	Diagram of Sampling Location
Page 1	6	Generic Calculations
Page 1	7 F	Flow Calculations
Page 1	8 (Concentration Calculation
Page 1	9 L	Incertainty Estimate Calculations - Manual Techniques
Page 2	20 🖊	Appendix 4
Page 2	21 L	Incertainty Estimates:- Hydrogen Fluoride

Page 3 of 21

Monitoring Objectives

The monitoring was undertaken to check compliance with authorised emission limits.

All monitoring procedures were carried out to the MCERTS requirements under the REC Environmental Monitoring quality system to ISO 17025: 2005.

Monitoring was undertaken for the listed emissions from the following sampling positions:

Sampling Location	Emission
Acid Fume Scrubber	Hydrogen fluoride

Special Monitoring Requirements

There were no special requirements for this monitoring campaign.

Page 4 of 21

Summary Of Methods

Emission	Method number	Method standard
Gas velocity	TPM/01	BS EN 13284 : 2002
Water vapour	TPM/37	BS EN 14790 : 2005
Hydrogen fluoride	TPM/38	BS ISO 15713 : 2006

Summary Of Results

The table presents the atmospheric emissions from the tests undertaken on behalf of Staffordshire Crystal Ltd. The results were measured from the sample positions downstream of the arrestment plant.

Emission at	Sampling			Emission	Authorised	Uncertainty	Detection	Mass
Brierly Hill	Time			Result	Limit	+/-	Limit	Emission
Acid Fume Scrubber	Date Start End		mg/m³*	mg/m³*	mg/m³*	mg/m³*	g/h	
s Hydrogen fluoride	14/10/14	13:09	13:49	ND	5	0.02	0.17	0.66

* at reference conditions	Stack Gas \	Veight	0 °C	Without correction for moisture			
	29.00	Kg/kmol	101.3 kPa	Oxygen	No Correction	%	

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above) Nm³ 273 K, 101.3 kPa

** Analysis not required #- UKAS accredited only

ND Non detectable ## - Not Accredited

s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Page 5 of 21

Operating Information

The tables below shows details of the operating information on each sampling date for: Acid Fume Scrubber

Date	Process type	Process	Fuel	Feedstock	Abatement	Load
		duration				
14/10/2014	Acid Fume Scrubber	Continuous	-	Glass	Wet Scrubber	Normal operation

There are no CEMs currently installed on this process for the determinands being monitored.

Comments & Monitoring Deviations

A waste gas homogeneity test to BS EN 15259:2007 (MID) is not required:-

The homogeneity test is not applicable to non-combustion processes.

The homogeneity test is not applicable to duct areas less than 1m².

All monitoring was performed in accordance with the relevant procedures.

The velocity and temperature profile at the sampling location met the requirements of BS EN 13284-1: 2002.

The impinger efficiency check for hydrogen fluoride was not performed because the measured emission was less than 30% of the emission limit value.

When the results are expressed as non-detected the mass emissions are calculated from the detection limit and therefore they are worst case results.

Part 2: Supporting Information

Report for the Periodic Monitoring of Emissions to Air.

Client Staffordshire Crystal Ltd.

Site Brierly Hill

PlantAcid Fume ScrubberSampling Date14th October 2014Report Date25th November 2014

Job Number 2p71962

Permit Number PB/98 Variation 200839393

Report Prepared by: Print Graham Rowley

MCERTS No. MM 03 148 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Emily Buffam

MCERTS No. MM 04 502 Level 2 TE: 1,2,3,4

REC Environmental Monitoring Ltd

10 Broad Lane Moldgreen Huddersfield HD5 9BX

Tel: 0845 676 9303

Company Registration No 08343822

Visit 1 of 2014

Page 7 of 21

Page 8 of 21

Emission Monitoring Procedures And Instrumentation

Gas velocity and temperature

Documented in-house procedure TPM/01 to the main procedural requirements of BS EN 13284:2002. Velocity and temperature measurements are performed using a calibrated Pitot tube, as described in BS ISO 10780:1994 and a calibrated thermocouple. Velocity and possible flow deviation measurements are carried out at selected, representative points in the gas stream.

Water vapour

Documented in-house procedure TPM/37 to the main procedural requirements of BS EN 14790:2005. A measured volume of gas is extracted from the gas stream through a moisture trapping unit. The mass gain of moisture trapped is divided by the volume of gas sampled to determine the mass concentration of water vapour. For water saturated stacks the temperature of the gas stream is measured and the water vapour concentration is determined using liquid-gas equilibrium tables. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Hydrogen fluoride

Documented in-house procedure TPM/38 to the main procedural requirements of BS ISO 15713:2006- substantial metered volume of gas extracted through a dedicated heated probe, filter, sample line and chilled multi-impinger train containing sodium hydroxide solution, and subsequent Ion Chromatography analysis. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Sampling Project Personnel Competency And Expiry Dates

Report prepared by:	Graham Rowley	MCERTS No MM 03 148	Level 1	Level 2 30/11/2018	TE1 30/11/2018	TE2 31/03/2015	TE3 31/10/2019	TE4 31/03/2020	
Report authorised by:	Emily Buffam	MM 04 502	-	30/06/2016	30/06/2016	31/08/2016	31/08/2016	31/08/2016	
Team leader:	Graham Rowley	MM 03 148	-	30/11/2018	30/11/2018	31/03/2015	31/10/2019	31/03/2020	
Technician:	Tom Clarkson	MM 02 120	31/12/2018	-	-	-	-	-	

Equipment References

Equipment	Reference Number
Probe	P52
Probe Thermocouple	TP52
Stack Thermocouple	TS52
Control Box	CU13
Timer / Stopwatch	CU13/8
Barometer	WS04
Pitot	PT113
Callipers	CV17
Hot Box	HB23
Impinger Thermocouple	TV34
Sample Rate Calculation Equipment	Laptop
Balance	BL19
Weights	W35, W36

Subcontracted Analysis

REC Environmental Monitoring has, with your approval, used the following sub-contracted laboratories for the laboratory analyses referenced below:

Laboratory: Scientific Analysis Laboratories

Parameters: Acid Gases - Internal method IC

Accreditation: UKAS Accredited testing laboratory number 1549

Visit 1 of 2014

Page 10 of 21

Page 11 of 21

Date	14/10/2014
Time	13:20
Pitot Cp	0.85

Barometric pressure	98.9	kPa
Duct static pressure	0.06	kPa
Stack Area	0.181	m²

Stack Diameter (circular)	0.48	m

Traverse	Traverse	Depth	ΔΡ	Т	Angle	velocity	Traverse	Depth	ΔΡ	Т	Angle	velocity
Point	Line	cm	mmH ₂ O	°C	0	m/s	Line	cm	mmH ₂ O	°C	0	m/s
1	Α	5.0	3.0	14	<15	5.9	В	5.0				
2	Α	5.0	3.5	14	<15	6.4	В	5.0				
3	Α	5.7	4.0	14	<15	6.9	В	5.7				
4	Α	8.5	4.0	14	<15	6.9	В	8.5				
5	Α	12.0	4.5	14	<15	7.3	В	12.0				
6	Α	17.1	3.5	14	<15	6.4	В	17.1				
7	Α	30.9	3.5	14	<15	6.4	В	30.9				
8	Α	36.0	5.0	14	<15	7.7	В	36.0				
9	Α	39.5	4.5	14	<15	7.3	В	39.5				
10	Α	42.3	5.5	14	<15	8.1	В	42.3				
11	Α	43.0	5.5	14	<15	8.1	В	43.0				
12	Α	43.0	5.0	14	<15	7.7	В	43.0				

Average Pitot DP	4.25	mmH₂O
Average Temperature	287.2	κ
Average Velocity	7.1	m/s
Average volumetric flow rate	1.28	m ³ /s at stack conditions
Average volumetric flow rate	1.19	m³/s (wet STP)
Average volumetric flow rate	1.16	m³/s (dry STP)
Average volumetric flow rate	N/A	m ³ /s (drv. STP, reference oxygen concentra

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

а	Angel of gas flow less than 15° with regard to duct axis		YES	
b	No local negative flow			
С	Minimum pitot greater than 5Pa			
d	Ratio of highest to lowest local gas velocity less than 3:1			
-	Minimum local gas velocity 5.9			
	Maximum local gas velocity 8.1			
	Ratio of highest to lowest local gas velocity 1.35			

Moisture Determination BS EN 14790:2005

	Volume	Temp	Pressure
	m ³	°C	mbar
Meter start	5.141	12	989
Meter end	5.249	13	989
Meter Yd	1.013		
Gas volume	0.102		

Impinger	1	2	3	4	5
Mass start (g)	338.9	332.5	227.8	945.5	
Mass End (g)	339.6	332.6	228.0	947.0	
Total Mass collected (g)		2.5			

Water vapour content (% v/v) 3.0

If water droplets are present in the gas, the water vapour content is calculated using BS EN 14790 Annex A

N/A % v/v

Page 12 of 21

Probe/Pitot ID No		P52/PT113	Nozzle Diameter (d) mm	-
Pitot Calibration Factor (Cp)		0.85	In-stack Filtration Y/N	I N
Gas Calibration Factor (Y)		1.013	Leak check OK Y/N	I Y
Barometric Pressure	kPa	98.9	Meter ID No	CU13
Duct static Pressure	kPa	0.06	Initial Gas Meter Reading m	5.141
Date		14/10/2014	Final Gas Meter Reading m	5.249
Start Time	hh:min	13:09	Sampled Vol, Dry at Meter m	0.108
End Time	hh:min	13:49	Sampled Vol, Dry STP Nm	0.102
Sampling Duration	hh:min	00:40	Moisture content of stack gas % v/v	3.0

Impinger	1	2	3	4
Initial mass (g)	338.9	332.5	227.8	945.5
Final mass (g)	339.6	332.6	228.0	947.0

				Temperatures			
Sample	Line	Sampling	Pitot Reading	Sample Gas	Filter	Meter	Orifice
Point		Time	J	Temperature	Temperature	Temperature	Pressure
Number			(h)	(Ts)		(Tm)	(Dh)
		hh:min	mm w.g	°C	°C	°C	mm w.g
Centre	Point	00:00	3.5	14	160	12	1.5
		00:05	3.5	14	160	12	1.5
		00:10	3.5	14	160	12	1.5
		00:15	3.5	14	160	12	1.5
		00:20	3.5	14	160	13	1.5
		00:25	3.5	14	160	13	1.5
		00:30	3.5	14	160	13	1.5
		00:35	3.5	14	160	13	1.5
		00:40					
 							
				4.6 -		15 -	
		Averages	3.5	14.0	160.0	12.5	1.5

Average velocity	6.42	m/s
Average flow rate	1.16	m³/s
Average flow rate	1.08	m³/s*

Page 13 of 21

Date	14/10/2014
Start time	13:09
Finish time	13:49

	UNITS	Impinger 1	Impinger 2	Impinger 3 (Drop Out)	Impinger 4 (Silica Gel)
Start mass	g	338.9	332.5	227.8	945.5
Finish mass	g	339.6	332.6	228.0	947.0
Impingers 1 & wash mass	g	186.5			
Impingers 2,3 & wash mass	g	172.3			
Field blank mass	g	197.9			
Sample gas volume	Nm³	0.102			

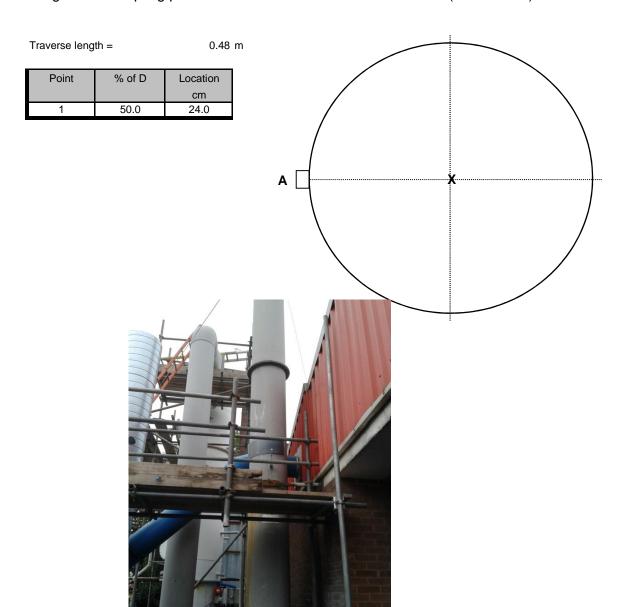
Acid Gases	UNITS	Impinger 1 & wash conc.	Impinger 2&3 & wash conc.	Field Blank conc.
Hydrogen fluoride	mg/l	2p71962/02 0.05	2p71962/03 0.05	2p71962/01 0.05

		Impinger 1	Impinger 2	Detection	Field Blank	Total	Impinger
		Emission	Emission	Limit	Emission	Emission	Efficiency %
Hydrogen fluoride	mg/m³*	0.09	0.08	0.17	0.09	0.17	N/A

Numbers in bold indicate detection limits

Laboratory	SAL		
Method N° & Accreditation Status	IC	UKAS	
Date of analysis	29/10/2014		

Oxygen content of gas	%	N/A
Moisture content of gas	% v/v	3.0


Visit 1 of 2014

Page 14 of 21

Page 15 of 21

Diagram Of The Sampling Location

Diagram of sampling points across the cross section of the duct (not to scale).

Page 16 of 21

General Calculations

Stack area:

Area of a circle =
$$\frac{\pi \cdot D^2}{4}$$

D = Diameter (m) $\pi = 3.142$

Pressure conversion:

1mmH2O = 0.00980665 kPa 1mmH2O = 9.80665 Pa 1 mar = 0.1 kPa

Water vapour concentration:

From reference calculations (taken from BS EN 14790):

$$V_{WC(\%)} = \frac{\frac{m_{WC}.V_{mol(std)}}{M_{W}}}{\frac{m_{WC}.V_{mol(std)}}{M_{W}} + V_{m(std)}} \times 100$$

VWC (%) = Water vapour content on wet basis, in volume % (m³ of water vapour in m³ of wet gas)

Vm(std) = Dry gas volume measured, corrected to standard conditions (m³)

mWC = Mass of water collected in the impingers (g)

Mw = Molecular weight of water, 18.01534 rounded to 18 (g/mol)

Vmol(std) = Molar volume of water at standard conditions = 0.0224 (m3/mol)

Gas meter volume at standard conditions (STP)

From reference calculations (taken from BS EN 14790):

$$V_{m(std)} = y_d \times (V_2 - V_1) \times \frac{T_{std}}{T_m} \times \frac{p_m}{p_{std}}$$

Vm(std) = Dry gas meter volume at standard conditions (m³)

yd = Gas meter calibration coefficient

(V2-V1) = Dry gas meter volume at actual conditions (m³)

Tm = Actual Temperature (K)
Tstd = Standard temperature (273 K)

pm = Absolute pressure at the gas meter (kPa) pstd = Standard gas pressure (101.3 kPa)

Isokenetic Ratio (%):

From reference calculations (taken from EA TGN M2):

$$IsokineticRatio(\%) = \frac{Velocity\ at\ the\ sampling\ nozzle}{Velocity\ of\ the\ stack\ gas} \times 100$$

Estimating Measurment Uncertainty

Uncertainty estimates are calculated using the general rule of uncertainty propagation. Guidance is taken from publications including UKAS document M3003 and ISO 20988:2007.

Page 17 of 21

Flow Calculations

Velocity:

From reference calculations (taken from ISO 10780):

$$\overline{v} = KC \sqrt{\frac{T_s \, \Delta \overline{p}}{p_e \, M_s}}$$

v = Average velocity (m/s)

 \dot{C} = velocity calculation constant = 129

Ts = Average stack temperature (K)

Ms = Molar mass of gas; assume 29 kg/kmol unless the molar mass is < 27 kg/kmol or > 31 g/kmol

K = Pitot calibration coefficientPe = Absolute gas pressure (kPa)

 $\Delta p = \Delta p$ Average pitot tube pressure differencial (kPa)

Volume flow rate

From reference calculations (taken from ISO 10780):

$$q_{va} = vA$$

qva = Average flow rate (m³/s)

v = Average velocity (m/s)

A =Stack cross-sectional area (m²)

Volume flow rate corrected for moisture

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{(100 - H_a)}{(100 - H_m)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)
 Ha = Moisture at actual conditions (%volume)

Hm = Reference moisture (%volume)

Volume flow rate corrected for temperature and pressure

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(T_m p_a\right)}{\left(T_a p_m\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

Ta = Temperature at actual conditions (K)

Tm = Reference Temperatue (K)

pa = Absolute gas pressure at actual conditions (kPa)

pm = Reference pressure (kPa)

Volume flow rate corrected for oxygen

From reference calculations (taken from BS ISO 9096):

$$q_{m} = q_{va} \frac{\left(20.9 - O_{2,ref}\right)}{\left(20.9 - O_{2,m}\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

O2,m = Actual oxygen concentration (%)

O2, ref = Reference oxygen concentration (%)

Page 18 of 21

Concentration Calculations

Concentration:

From reference calculations (taken from BS EN 13284-1):

$$c = \frac{m}{V}$$

c = Concentration m = Mass of substane V = Volume sampled

Mass Emission

Mass emission= $c \times q_m$

c = Concentration q = Volume flow rate

Concentration corrected for oxygen:

From reference calculations (taken from BS ISO 9096):

$$c_m = c_a \times \frac{20.9 - O_{2,ref}}{20.9 - O_{2,a}}$$

cm = Concentration at reference conditions

ca = Actual concentration
O2, ref = Reference oxygen (%)
O2, a= Actual Oxygen (%)

Concentration corrected for moisture:

From reference calculations (taken from BS ISO 9096):

Convert wet gas to dry gas

$$c_{dry} = c_{wet} \times \frac{100}{100 - H_a}$$

Convert dry gas to wet gas

$$c_{wet} = c_{dry} \times \frac{100 - H_a}{100}$$

cwet = Concentration wet gascdry = Concentration dry gasHa = Water vapour content (%vol)

Conversion of parts per million (ppm) to mg/m³

From reference calculations (taken from EA TGN M2):

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

molar volume at 273K = 22.4 litres

When Converting TOC

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight of\ carbonin\ span\ gas(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

Calculation of Uncertainty Estimates - Manual Monitoring Techniques

$$C_{m} = \frac{Q_{m}}{V_{std}}$$

$$V_{std} = V_{T.p} \times \frac{T_{std}}{T} \times \frac{p}{P_{std}}$$

Where:

mg/m³ C_m the measured concentration Q_{m} mass concentration collected in absorber solution and filter in ma the volume of the sample solution m³ volume sampled at standard conditions mean temperature of gas meter Κ in standard temperature 273K p=prel+Patm absolute pressure = gas meter pressure + atmospheric pressure kPa P_{std} standard pressure 101.325 kPa m^3

volume sampled as indicated by the gas meter

Expression for calculation of the combined uncertainty of the measured concentration

$$\frac{u^{2}(C_{m})}{(C_{m})^{2}} = \frac{u^{2}(Q_{m})}{(Q_{m})^{2}} + \frac{u^{2}(V_{s})}{(V_{s})^{2}} + \frac{u^{2}(V_{std})}{(V_{std})^{2}}$$

Expression for calculation of the combined uncertainty of the gas volume

$$V_{std} = V_{T.p} \times \frac{T_{std}}{T_m} \times \frac{p}{P_{std}}$$

Assuming that uncertainties associated with the standard quantities T_{std} and P_{std} are negliable Expression for calculation of the combined uncertainty of the measured concentration

$$\frac{u^2(C_m)}{(C_m)^2} = \frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(V_s)}{(V_s)^2} + \frac{u^2(V_{T,p})}{(V_{T,p})^2} + \frac{u^2(T)}{(T)^2} + \frac{u^2(p_{rel})}{(p)^2} + \frac{u^2(p_{atm})}{(p)^2}$$

$$u(C_{m}) = \sqrt{\left(\frac{u^{2}(Q_{m})}{(Q_{m})^{2}} + \frac{u^{2}(v_{s})}{(v_{s})^{2}} + \frac{u^{2}(V_{T.p})}{(V_{T.p})^{2}} + \frac{u^{2}(T)}{(T)^{2}} + \frac{u^{2}(p_{rel})}{(p)^{2}} + \frac{u^{2}(p_{atm})}{(p)^{2}}\right) \times (C_{m})^{2}}$$

Overall expanded uncertainty (k = 2)

$$U(C_m) = u(C_m) \times k$$

Uncertainty of the measured concentration at oxygen reference concentration

$$u\left(C_{m,O_{2,ref}}\right) = \sqrt{\left(\frac{u^{2}(Q_{m})}{\left(Q_{m}\right)^{2}} + \frac{u^{2}(v_{s})}{\left(v_{s}\right)^{2}} + \frac{u^{2}(V_{T,p})}{\left(V_{T,p}\right)^{2}} + \frac{u^{2}(T)}{\left(T\right)^{2}} + \frac{u^{2}(p_{rel})}{\left(p\right)^{2}} + \frac{u^{2}(p_{atm})}{\left(p\right)^{2}} + \frac{u^{2}(O_{2,meas,dry})}{\left(21 - O_{2,meas,dry}\right)^{2}}\right) \times \left(C_{m,O_{2},ref}\right)^{2}}$$

Where:

 $u(Cm,O_{2,ref})$ uncertainty associated with the mass concentration at O₂ reference in mg/m³ concentration

mg/m³ Cm,O_{2 ref} mass concentration at O₂ reference concentration

O₂ measured concentration O_{2,meas} % volume

 $u((O_{2,meas)dry)}$ uncertainty associated to the measured O2 concentration in % (relative to O_{2 meas})

Visit 1 of 2014

Page 20 of 21

Uncertainty Estimate For The Measurement Of Hydrogen Fluoride ISO 15713

	Of Hydrogen Fluoride Mass concentration of HF	Units	i i				
Symbol Cm	Mass concentration of HF 0.18			Cumbal	Daily omic	ssion limit value	Units
Cm at O2 ref	0.16 N/A	mg/m ³		Symbol DELV	Daily erris	5.0	mg/m ³
Cili at O2 lei	Reference Oxygen	mg/m ³		DLLV		5.0	mg/m
O ₂ ,ref	0.0	%	(0 = No C	orrection)			
		•	1.5				
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(Q _m)	Analytical Uncertainty	7.0	%	Normal (k=2)	1	1	7
Q _m	Concentration in absorption solution	0.10	mg/l	Normal	-	1	0.0070
u (Q _m)/Q _m	Relatve		-	Normal	-	- 21- 2	0.0700
						$u(Q_m)^2/Q_m^2$	0.0049
	Volume of sampled gas						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(calV _{T.p})	Calibration	0.0005	m ³	Normal	2	1	0.0003
u (repV _{T.p})	Repeatability	0.0001	m ³	Normal	1	1	0.0001
$u(driftV_{T,p})$	Drift	0.0003	m ³	Rectangular	$\sqrt{3}$	1	0.0002
u (resV _{T.p})	Resolution	0.0002	m ³	Rectangular	$\sqrt{3}$	1	0.0001
u(V _{T.p})	Combined Uncertainty	-	-	Normal	-	-	0.0003
$u(V_{T,p})/V_{T,p}$	Relatve	0.102	m ³	-	-	-	0.0034
						$u (Vm)^2 / Vm^2$	0.000011
	Temperature of the DGM	1		_		, ,	
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(calTi _m)	Calibration	1.00	K	Normal	2	1	0.5000
u(calTc _m)	Calibration	1.0	K	2.00	2	1	0.5000
u(resT _m) u(driftT _m)	Resolution Drift	0.1 1.0	K K	Rectangular	$\frac{\sqrt{3}}{\sqrt{2}}$	1 1	0.0577 0.5774
u(T _m)	Combined Uncertainty	1.0	, n	Rectangular Normal	√ 3	-	0.5774
u(T _m)/Tm	Relatve	285.5	K	Normal	-	-	0.0032
u(Im//IIII	Neialve	200.0	IX	Noma	=	$u(\text{Tm})^2/\text{Tm}^2$	0.000010
	Atmospheric Pressure					<i>u</i> (1111) / 1111	0.000010
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(P _{atm})	Metrological Office	300	Pa	Normal	$\sqrt{3}$	1	173
u(P _{atm})	Combined Uncertainty	-	-	Normal	-	-	173
u(P _{atm})/P	Relatve	98900	-	Normal	-	-	0.00
		1	U	•		$u(P_{atm})^2/P^2$	0.00
	Relative DGM Pressure						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u (P _{rel})	DGM Pressure	40	Pa	Normal	1	1	40
u(P _{rel})	Combined Uncertainty	-	-	Normal	-	-	40
u (P _{rel})/P	Relative	98915	-	Normal	-	-	0.0004
						u(Prel) ² /P ²	0.0000002
0	Volume (mass) of Absorption Solution	17-1	11.96	Destablish District	D: :		
Symbol u(repvs)	Source of Uncertainty	Value 0.13	Units	Probability Distribution Normal	Divisor 1	ci 1	<i>Ui</i> 0.13
u(calvs)	Repeatability Calibration (Tare)	0.13	g (ml)	Rectangular	1	1	0.13
u(drvs)	Drift	0.10	g (ml) g (ml)	Rectangular	1	1	0.10
u(resvs)	Resolution	0.10	g (ml)	Rectangular	$\sqrt{3}$	1	0.03
<i>u</i> (vs)	Combined Uncertainty	-	- 9 (1111)	rtootarigular	V 3		0.19
	Combined Checkanity			Normal	_	- 1	0.0010
U (VS)/VS	Relative	186.5					
u (vs)/vs	Relative	186.5	-	110111141		u(vs) ² /vs ²	0.0000011
u (vs)/vs	Relative Oxygen reference concentration	186.5	-	- Toma		u(vs)²/vs²	
mbol		Value	Units	Probability Distribution	Divisor	u(vs)²/vs²	
, ,	Oxygen reference concentration		Units		Divisor 1		0.0000011
rmbol	Oxygen reference concentration Source of Uncertainty	Value		Probability Distribution		ci	0.0000011 <i>Ui</i>
rmbol	Oxygen reference concentration Source of Uncertainty Measurement of oxygen	Value		Probability Distribution	1	ci 1	0.0000011 <i>Ui</i> N/A
rmbol (O ₂ ,meas)dry)rel easurement uncert	Oxygen reference concentration Source of Uncertainty Measurement of oxygen Uncertainty of oxygen correction Measured Oxygen ainty	Value N/A	%	Probability Distribution	1	ci 1 - u(Orel) ² /O ²	0.0000011 <i>Ui</i> N/A N/A N/A
rmbol (O ₂ ,meas)dry)rel easurement uncert	Oxygen reference concentration Source of Uncertainty Measurement of oxygen Uncertainty of oxygen correction Measured Oxygen ainty Combined Standard Uncertainty	Value N/A	%	Probability Distribution	1 -	ci 1 - u(Orel) ² /O ²	0.0000011 <i>Ui</i> N/A N/A N/A M/A
rmbol (O ₂ ,meas)dry)rel easurement uncert	Oxygen reference concentration Source of Uncertainty Measurement of oxygen Uncertainty of oxygen correction Measured Oxygen ainty	Value N/A	%	Probability Distribution	1 -	ci 1 - u(Orel) ² /O ²	0.0000011 <i>Ui</i> N/A N/A N/A
rmbol (O ₂ ,meas)dry)rel easurement uncert Cm) Cm) at ref O ₂	Oxygen reference concentration Source of Uncertainty Measurement of oxygen Uncertainty of oxygen correction Measured Oxygen ainty Combined Standard Uncertainty Combined Standard Uncertainty	Value N/A - N/A	%	Probability Distribution	1 -	ci 1 - u(Orel) ² /O ²	0.0000011 <i>Ui</i> N/A N/A N/A M/A
mbol (O ₂ ,meas)dry)rel easurement uncerl Cm) Cm) at ref O ₂ epanded uncertaint	Oxygen reference concentration Source of Uncertainty Measurement of oxygen Uncertainty of oxygen correction Measured Oxygen ainty Combined Standard Uncertainty Combined Standard Uncertainty y expressed with a level of confidence of	Value N/A - N/A N/A	%	Probability Distribution	1 - ± ±	ci 1 - u(Orel) ² /O ² 0.01 N/A	0.0000011 Ui N/A N/A N/A M/A mg/m³ mg/m³
mbol (O ₂ ,meas)dry)rel easurement uncert Cm) Cm) at ref O ₂ epanded uncertaint Cm)	Oxygen reference concentration Source of Uncertainty Measurement of oxygen Uncertainty of oxygen correction Measured Oxygen ainty Combined Standard Uncertainty Combined Standard Uncertainty y expressed with a level of confidence of Expanded Combined Uncertainty	Value N/A - N/A - N/A 95%, k=2 k = 2	%	Probability Distribution	1 - ± ±	ci 1 - u(Orel) ² /O ² 0.01 N/A	0.0000011 Ui N/A N/A N/A mg/m³ mg/m³
mbol (O ₂ ,meas)dry)rel easurement uncert Cm) Cm) at ref O ₂ epanded uncertaint Cm) Cm,rel)	Oxygen reference concentration Source of Uncertainty Measurement of oxygen Uncertainty of oxygen correction Measured Oxygen ainty Combined Standard Uncertainty Combined Standard Uncertainty y expressed with a level of confidence of Expanded Combined Uncertainty Expanded Combined Uncertainty	Value N/A - N/A - N/A 95%, k=2 k = 2 k = 2	%	Probability Distribution	1 - ± ±	ci	0.0000011 Ui N/A N/A N/A Mg/m³ mg/m³ mg/m³ %
mbol (O ₂ ,meas)dry)rel easurement uncert Cm) Cm) at ref O ₂ epanded uncertaint Cm)	Oxygen reference concentration Source of Uncertainty Measurement of oxygen Uncertainty of oxygen correction Measured Oxygen ainty Combined Standard Uncertainty Combined Standard Uncertainty y expressed with a level of confidence of Expanded Combined Uncertainty	Value N/A - N/A - N/A 95%, k=2 k = 2	%	Probability Distribution	1 - ± ±	ci 1 - u(Orel) ² /O ² 0.01 N/A	0.0000011 Ui N/A N/A N/A M/A mg/m³ mg/m³
mbol (O ₂ ,meas)dry)rel easurement uncert Cm) Cm) at ref O ₂ epanded uncertaint Cm) Cm,rel) Cm,rel,ELV)	Oxygen reference concentration Source of Uncertainty Measurement of oxygen Uncertainty of oxygen correction Measured Oxygen ainty Combined Standard Uncertainty Combined Standard Uncertainty y expressed with a level of confidence of Expanded Combined Uncertainty Expanded Combined Uncertainty	Value N/A - N/A 95%, k=2 k = 2 k = 2 k = 2	% - %	Probability Distribution Normal -	1 - ± ±	ci	0.0000011 Ui N/A N/A N/A Mg/m³ mg/m³ mg/m³ %
rmbol (O ₂ ,meas)dry)rel easurement uncert Cm) Cm) at ref O ₂ epanded uncertaint Cm) Cm,rel) Cm,rel,ELV) epanded uncertaint	Oxygen reference concentration Source of Uncertainty Measurement of oxygen Uncertainty of oxygen correction Measured Oxygen ainty Combined Standard Uncertainty Combined Standard Uncertainty y expressed with a level of confidence of Expanded Combined Uncertainty Expanded Combined Uncertainty Expanded Combined Uncertainty y at oxygen reference conditions expresse	Value N/A - N/A 95%, k=2	% - %	Probability Distribution Normal -	1 - ± ± ±	ci	0.0000011 Ui N/A N/A N/A M/A mg/m³ mg/m³ % %
mbol (O ₂ ,meas)dry)rel easurement uncert Cm) Cm) at ref O ₂ epanded uncertaint Cm) Cm,rel) Cm,rel,ELV)	Oxygen reference concentration Source of Uncertainty Measurement of oxygen Uncertainty of oxygen correction Measured Oxygen ainty Combined Standard Uncertainty Combined Standard Uncertainty y expressed with a level of confidence of Expanded Combined Uncertainty Expanded Combined Uncertainty	Value N/A - N/A 95%, k=2 k = 2 k = 2 k = 2	% - %	Probability Distribution Normal -	1 - ± ±	ci	0.0000011 Ui N/A N/A N/A Mg/m³ mg/m³ mg/m³ %

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor (k = 2), providing a level of confidence of approximately 95% The uncertainty evaluation has been carried out in accordance with UKAS requirements.